C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype.
نویسندگان
چکیده
OBJECTIVE Inflammation is pivotal in atherosclerosis. Monocyte-macrophages are crucial in atherosclerosis. Monocytes can develop into subsets: classically (M1) or alternatively (M2) activated cells. Several studies point to a proinflammatory role for C-reactive protein (CRP). Because there is a paucity of data on the effects of CRP on macrophage phenotype, we tested effects of CRP on macrophage polarization. METHODS AND RESULTS Monocytes were incubated with CRP (0 to 50 μg/mL) and differentiated into macrophages for 7 days. Phenotypic characterization of M1 and M2 macrophages was performed using flow cytometry. CRP treatment resulted in increased population of M1 macrophages (tumor necrosis factor [TNF]/interleukin [IL]-12/C-C chemokine receptor 2, TNF/IL-12/monocyte chemotactic protein-1, or TNF/IL-1/IL-12). These effects were not abrogated by polymixin B or small interfering RNA to Toll-like receptor-4, but they were abrogated by boiled CRP. Administration of human CRP to rats in vivo increased polarization of macrophages to M1 phenotype compared with human serum albumin. When macrophages were primed to the M2 phenotype with IL-4, addition of CRP resulted in significantly increased secretion of TNF-α, MCP-1, and IL-1 and conversion of macrophages from the M2 to the M1 phenotype. CRP failed to prime macrophages to the M1 phenotype in presence of CD32/CD64 small interfering RNA or dominant-negative nuclear factor kappa B. CONCLUSION Collectively, these results further support a role for CRP in promoting differentiation of human monocytes toward a proinflammatory M1 phenotype.
منابع مشابه
بررسی بیان ژن های IL4، TNFα، TGFβ و IFNγ در تائید پلاریزاسیون ماکروفاژهای M1 و M2 حاصل از کشت مونوسیت های انسانی
background: Classical macrophages (M1) and alternative macrophages (M2) are responsible for various functions in order to maintain homeostasis. BCG vaccine and hydatid cyst fluid can be examples of stimulants which can cause M1and M2 macrophage polarization. Evaluating the expression of markers such as IFNγ and TNFα for M1 phenotype and TGFβ and IL4 for M2 phenotype is one of the confirmatory w...
متن کاملExtracellular Mycobacterial DnaK Polarizes Macrophages to the M2-Like Phenotype
Macrophages are myeloid cells that play an essential role in inflammation and host defense, regulating immune responses and maintaining tissue homeostasis. Depending on the microenvironment, macrophages can polarize to two distinct phenotypes. The M1 phenotype is activated by IFN-γ and bacterial products, and displays an inflammatory profile, while M2 macrophages are activated by IL-4 and tend ...
متن کاملmiR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα
Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages); alternatively activated macrophages (M2 macrophages). However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a) is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2...
متن کاملP130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases
Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...
متن کاملApolipoprotein E induces antiinflammatory phenotype in macrophages.
OBJECTIVE Apolipoprotein E (apoE) exerts potent antiinflammatory effects. Here, we investigated the effect of apoE on the functional phenotype of macrophages. METHODS AND RESULTS Human apoE receptors very-low-density lipoprotein receptor (VLDL-R) and apoE receptor-2 (apoER2) were stably expressed in RAW264.7 mouse macrophages. In these cells, apoE downregulated markers of the proinflammatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2011